If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(18a^2+51a-42)=0
We get rid of parentheses
18a^2+51a-42=0
a = 18; b = 51; c = -42;
Δ = b2-4ac
Δ = 512-4·18·(-42)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-75}{2*18}=\frac{-126}{36} =-3+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+75}{2*18}=\frac{24}{36} =2/3 $
| 6n+1=27 | | 4+2(3x-7)=16 | | 4(3+8n)-8n=108 | | 4+23x-7=16 | | 5(y−4)=7(2y+1) | | 11-(2v-3)=-2-8 | | 6y+18=3(y+5) | | -25+x/3=23 | | 44=u/2+14 | | 8n+(=31 | | v/5-13=15 | | (5x+45)°+(3x-25)°=180 | | -x²+5x+1=0 | | 86+x/3=23 | | 4w+17=69 | | .5(2x-4)=10 | | c=1-(5/2D) | | 3÷4p=18 | | c=1-(5/2)D | | 5(2x-7)=-50+75 | | 106=p/2+43 | | v/4-13=5 | | 35/105=24/x | | n/5-1=5 | | 5(x+2)-4=5(x-2) | | -2/5x-1/5x=8 | | x²+9x+88=0 | | 2(-4x+3)+3x+3=16 | | 5x+19=3(x+3) | | F(x)=4x-3/2x+1 | | 6/7x=5/2x+12/3 | | 8x+9=7x+10 |